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Studies discussed in the survey [i] resolved questions relating to the transmission of 
local loads to shells through stiffening ribs. In most of these studies, the complexity of 
the solutions made it necessary to obtain numerical results on a computer and present them 
in the form of graphs and tables. Thus, from the viewpoint of constructing simple analyti- 
cal solutions, the problem requires further study. 

Below, we use semi-momentless shell theory to construct compact formulas to calculate 
the contact reactions, deflections, and bending moments in the rib. An interesting aspect 
of our approach is the rapid decay of local perturbations in the circumferential direction 
[2], i.e., the shell is assumed to be infinite in the direction. The solutions are not 
periodic with respect to the angular coordinate. The use of nonperiodic so].utions in prob- 
lems concerning the local strength of shells takes it impetus from the works of W. Finster- 
wald, F. Odquist, and other foreign researchers. Meanwhile, an analysis of their errors 
allowed Chernyshev [3] to choose which simplifying assumptions were suitable for use. 

i. Expansion of Components of the Stress-Strain State into Single Trigonometric Series. 
Let a shell of radius R and thickness h be simply supported by its ends x = 0, x = s (see 
Fig. i). The section x = x I of the shell is loaded by the normal force P through a rib with 
the bending stiffness Eli I. We need to determine the effect of the shell on the deformation 
and stress state of the rib, which takes up the applied load. 

Besides the above-noted simplifications, we will solve the problem by additionally 
assuming that the thin-walled cylinder has a small relative elongation (R ~ s ! 5R) and inter- 
acts with the rib only by means of normal contact reactions q(x) distributed over the zero 
generatrix ~ ~= 0. We will ignore the tangential component of the interaction and the eccen- 
tricity of the reinforcement. We will also ignore the mutual effect of several ribs affixed 
to the cylindrical surface. 

Given these assumptions, it is expedient to use the well known solution in [4] as the 
Green's function. This solution, constructed on the basis of the equations of semi-moment- 
less theory [5], has the form: 

w (x, xl) = A ~ k -3/2 s i n  (kX1) s in  (kX) ,  
h = l  

A = 1 / 2  - -  ] / 2  [12 (1 - -  v")] 5/s R314I '72 nx 1 nx 
(2x)sl 2 Eh,/~ , X ,  = --[-,  X = --[-. 

( 1 . 1 )  

Here, w(x, x I) is the deflection of the zero generatrix at the point (x, 0) from the action 
of a single normal force at the point (x I, 0); E and v are the elastic modulus and the Pois- 
son's ratio of the shell material. 

The contact load 

q (x) = 2l -1 ~ a~ sin (kX) (1 .2 )  
h = l  

causes the displacements 

w (x) = A ~ ahk -31~ s i n  (kX). (1 .3 )  
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Fig. i 

We take the following as the Green's function for the rib 

oo 

• = , w 1 (x, x D --  naE / I  k----'l k-* sin (/cX D sin (kX),  11 blh] t2 ' (1.4) 

where w1(x, Xm) is the deflection of the rib in the section x due to the unit force in the 
section xz; bl and h i are its width and height, measured along a normal to the shell; E l is 
the elastic modulus of the reinforcement. 

In accordance with (1.4), the rib deflections from the contact load q(x) and the ex- 
ternal force P will be 

oo 

u k (x) = 2z~  ~ k_ 4 (p sin (kXl) - -  ah) sin (kX). 
n4ElI~ ~:= (1.5) 

The strain compatibility condition w(x) = w1(x) is satisfied on the contact line (~ = 
0). Thus, with allowance for Eqs. (1.3) and (1.5), we obtain 

A ah]c -a/2 213u-~ - -  (~) s i n  ( k X l )  - -  ah).  ( 1 6 ) n~s 

The solution of Eq. (1.6) is 

ak = Pc(k 5/2 + c ) < s i n  ( k X l ) , c  = 213(a4ElI1A)-l. ( 1 . 7 )  

I n s e r t i n g  t h e s e  v a l u e s  o f  a k i n t o  ( 1 . 5 ) ,  we o b t a i n  t h e  f o l l o w i n g  f o r  t h e  d e f l e c t i o n s  o f  t h e  
r i b  ( and  t h e  s h e l l  a l o n g  i t s  g e n e r a t r i x )  

(xl) W (X, x,) = 9PU (~4Elli)  -1 S,  ~ ,  T ' 

h : l  

(1.8) 

The bending moment in the rib is proportional to the second derivative of the deflec- 
tion: 

oo (1.9) 

We then use (1.2) and (1.7) to obtain a series to calculate the contact reactions: 

cc 

& T, = ~ (k ~/~ + ~)-~ ~i. (kx~) s~n (~:x) 
k=I 

(1.1o) 
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The parameter c determines the effect of the shell on the bending of the rib. In the 
limit at c + O, the contact forces q(x, x I) = 0, while Eqs. (1.8), (1.9) describe the bend- 
ing of a supported team. The other ideal case (c + ~) corresponds to the loading of an un- 
reinforced shell. Equation (1.8) becomes solution (i.i), while it follows from (1.9)-(1.10) 
that 

M(x,  xO = O, q(x, x~) = PS(x - -  xO 

[6(z) is the Dirac delta function]. Thus, with large c, the contact reactions will be highly 
localized in the neighborhood of the point of application of the external force. 

In the design of refined shells, the value of the parameter c may vary broadly (0 < c < 
300). The convergence of the series (1.8)-(1.10) slows with an increase in c, so it is best 
to find a way to speed it up. 

2. Speeding up the Convergence of the Solutions. We will use the method developed by 
A. N. Krylov. Here, before the calculations are performed, it is necessary to isolate and 
analytically sum the slowly converging part of the series. The following series converge 
slowly in solution (1.8)-(1.10) 

oo 

k -~sin (kXl )  sin(kX) a = 2, ~., 4 . 

We will examine the auxiliary series 

k -~  cos ---/- 

We will subject this series to the Mellin transform. Using tables of integral trans- 
forms in [6] (p. 279), we find 

t ~-I k - =  cos dt = F (s) cos ~ ~ 
0 h = l  h = l  

(2.i) 

where r(z) is the gamma function. 

The series in the right side of (2.1) reduces to the Riemann zeta function [7] 

"~ ~-~ = ~ (z) (Re z > 1). 

Thus, having used the inverse Mellin transform, we obtain 

a+ioo 

k - ~  cos (k~) = ~ r (s) cos ~ (~ + 

~ = ~ t l - ~ , i =  ] / - -1 ,  0 < o r<  1. 

This integral can be calculated from the residue theorem. We will limit ourselves to 
the case ~ ~ 2m + 1 (m = 0, i, 2, ...), when the integrand has only simple poles. For the 
gamma function, they are located at the points s = -m, where res F(s) = (--1)m/m! [8]. The 

Reimann zeta function has a simple pole at a + s = i, and its residue is equal to unity [8]. 
We reduce integration along a straight line parallel to the imaginary axis to integration 
over the closed contour formed by an arc of a circle of radius r and the straight line Res = 
o. Considering that the integral over the circle arc is equal to zero at r + ~, we have 

k_,~cos(k~) = ~ (-- i) m r.n ~,n z.., ,-Tki--., cos ~ ~ (a  - -  m) + 
h ~ l  m~O 

(2 .2 )  
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oo 

T /  �9 

The Riemann zeta function was tabulated in [7]. Meanwhile, [(-2m) = 0 for natural num- 
bers. Thus, in the case of even ~, the series in the right side of Eq. (2.2) breaks off and 
reduces to a finite sum. Then assuming that a = 2 and a = 4, we can use Eq. (2.2) to find 

-~- - - ? + 2 7 2  , ? = ~ ,  

k -~ COS (k[) ----- a ~ - -  ~ -}- T2 74 ' 
h = l  

( 2 . 3 )  

which agrees with the well known results in [9]. 
but does converge quite slowly, since 0 f ~ ~ i. 
pansion, we obtain 

Series (2.2) does not break off at: g = 5/2 
Retaining terms of the order ~6 in the ex- 

co 

~... k -~/'~ cos(@) = i,3414 - -  9,3052~ 3I~ + 7,20477 ~- - -  O,1021y 4 - -  0,005976 + 0 (?a). 
h = l  

(2.4) 

Taking Eqs. (2.3), (2.4) into account, we accelerate the convergence of series (1o8)- 
(i.i0) and write them in the form 

- -  ~ k - '  ( l  + k~/'c-1) -I sin (kX1)sin (kX), 

- c ,  = x  - 

( 2 . 5 )  

oo 

oc 

-t- O,OO30(X~ - - X  8 _ ) -  ~ k-~/~-(1 + kS/ 'c-1)- ls in(kX,)s in  (kX). X+--_ l Il~--xz I 

Table 1 shows values of the functions Sj(x/Z, 1/2), j = i, 3, calculated for different 

x/s and c. They characterize the distribution of the deflections, moments, and contact 
forces along the rib with the action of an external force in the midsection. An analysis 
shows that these quantities decrease more rapidly with an increase in the parameter Co The 
deflections decrease the most slowly. As regards the bending moments and contact forces, 
they not only decrease with increasing distance from the concentrated external force, but 
they may change sign near the edge of the rib. 

The sought quantities reach their maximum values when the concentrated force is applied 
in the middle of the shell. It is interesting to attempt to obtain closed formulas to cal- 
culate these values. 

3. Closed Formulas for the Solutions. We will distinguish two cases: small and large 
c. At small c, series (2.5) converge fairly rapidly, and keeping several of the initial 
terms ensures good accuracy. In this case, 

s~ , 9~ l + d  8~(~ I-9V3d) 6-~ ( t + ' - , 5 V ~ J ) '  
i ! I (3.1) 

S ,  , = - K  ~;-d 9 ( i + 9 V ~ )  ' 5 ( ~ + 2 5 V ~ d )  - -  
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TABLE I 

iO 

30 

50 

lOxl-1 

i005 
905 
698 
465 
23i 

lO*S,(/, 

2727 
984 
242 
--6 
--4 

1666 
997 
482 
207 
73 

382 
328 
238 
t52 
74 

t724 
277 

--63 
--85 
--45 

859 
348 
96 
t9 
2 

5 �84 

4 
3 
2 
t 

240 
201 
t4t 
89 
43 

t399 
ilO 

--82 
--62 
--27 

632 
t96 
36 

3 
- - t  

TABLE 2 

i 

i 
5 

iO 
30 
50 

5i39 (5i39) 
i782 (i782) 
i005 (i005) 
382 (383) 
240 (241) 

7260 (7261) 
3688 (3693) 
2727 (2737) 
1724 (i750) 
1390 (1440) 

5997 (5998) 
2536 (2536) 
t666 (i671) 
859 (878) 
632 (663) 

t 
- -  49( t+49] /7d)"  d =  c -1, 

(1 , , 
$3 Y, = 1 ' t 0 4 0 - - t  + d 9 ] / 5  + 243d 25Vg + 525d" 

The a c c u r a c y  o f  Eqs .  ( 3 . 1 )  c a n  be  e v a l u a t e d  on t h e  b a s i s  o f  t h e  c a l c u l a t e d  r e s u l t s  i n  
Table 2. Shown in the table along with exact values of Sj(I/2, 1/2) are approximate values 

obtained by means of closed solutions (3.1). In the interval c e [0; I0], the error of Eqs. 
(3.1) is less than i%. These equations give exaggerated values of the deflections, moments, 
and contact forces. 

With large c, we approximately sum series (1.8)-(1.10) at the point x = xl = s with 
the use of the Euler-Maclaurin formula [i0]: 

co 

h ~ l , 3 . ,  �9 1 

We represent its improper integral in the form 

l 0 0 

where the minuend is the tabulated integral [9] 

0 

sin (n~t/v) ' (3.2) 

while the subtrahend is found with any desired accuracy by expanding the integrand into a 
series in powers of (c-i). 
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TABLE 3 

5 
iO 
30 
50 

iO0 
200 
300 

i782 (t786) 
1005 (1005) 
382 (382) 
240 (240) 
t26 (t26) 
66 (66) 
45 (45) 

3688 (3679) 
2727 (2726) 
1724 (1725) 
t399 (t399) 
t056 (1056) 
798 (798) 
678 (678) 

2536 (253t) 
1666 (t664) 
859 (859) 
632 (632) 
4i7 (4i7) 
275 (275) 
216 (218) 

TABLE 4 

(1 1 1 

5 
10 
30 
50 

1o0 
200 
300 

1828 
t015 
383 
240 
t26 
66 
45 

3470 
2630 
i695 
1382 
1047 
794 
675 

2515 
1659 
858 
(332 
417 
275 
2t6 

We 

the 

Let us illustrate the method of summation through the use of an example: 

h = 1 , 3 . . ,  h = l , 3 . . .  
k 5/2 + c ! 1,689-- X ~:5/2", C 

k = l , 3 . . .  3 -  C 

have 

/ ( z )  = x(xS/2 + c) -1 , / ( t )  = (1 + c) -1, I(oo) = / ' ( o o )  = / " ( o o )  = o ,  

t 2 c - - 3  5 108c--2t(c  'z+l) 
]" (t) = T 1' (1) = 2 (~ + i f "  (~ + ~)4 

Using Eq. (3.2), we find 

oo 

t ' x d x  2 1 n 2,1379 
. x ~ + c 5 c i l5  sin (4:V'5) cl/5 ' 
0 

1 

0 

Having inserted these results into the Euler-MacLaurin formula, we obtain the 
series 

S~ , = 7 -  , 1 , 6 8 9 - - - 5 [  ~ 7" - ~ - - E c  + 7 J - - 2 ~  + ~  + 

9 2 T } t 2 c - - 3  t . l ( c  ~ - t ) - -108c  
+ t 2 ( c +  t) ~ + ~ 4  ( c +  l) 4' " 

of 

We similarly find 

$ 2 ( 1 ,  t ) = t [  I'3213c2/5 

i 4 - - c  
+ 12 (t + c) 2 

- - +  

7 --~ + ~3P 9~ ~ + + 

t 3c 3 -- 36c 2 -~- 519c -- I92 
720 (c + i) ~ ' 

( 3 . 3 )  
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S~ '~- =7[ 7~ c ~c + 6c 2 ~ + -{- t2 (i ~- c) ~ 7 

i 8 4 c - - 3 c  2 - 6 3  
4- i44 (c -{- i) 4 

The numbers in parentheses in Table 3 show the results of calculations performed with 
Eqs. (3.3) and exact values of Sj(I/2, 1/2). It can be seen that at, c > 5, closed solutions 

(3.3) ensure good accuracy in the calculation (error smaller than i%). Closed solu- 
tions (3.1), (3.3) include the entire range of possible values of c and make numerical summa- 
tion of the series unnecessary. 

At large c, Eqs. (3.3) can be simplified by discarding the second-degree terms. This 
operation gives 

$1(t,~)=c-1(1,689--I,069c-1/5), 
(3.4) 

Calculations performed with Eqs. (3.4) show (see Table 4) that their error is less than 
2% within the interval 30 ~ c ~ 300. Thus, for large c, the calculation of the maximum de- 
flections, bending moments, and contact stresses reduces to the elementary formulas 

~4EIIIr 

= t,32t3 ~ ,  = 1,3213 -q--. 

In conclusion, we emphasize that the analytical results obtained here pertain to the 
case of loading of a reinforced shell by a single radial force. When the ribs are acted upon 
by a cyclically symmetric load comprising several concentrated stresses, the simplifications 
that were made lose meaning and it becomes necessary to construct periodic solutions in the 
angular coordinate - as has been done in [ii, 12] and other studies in the theory of ribbed 
shells. 
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